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Abstract. Recent approaches in classifying data streams are based on supervised
learning algorithms, which can be trained with labeled data only. Manual labeling
of data is both costly and time consuming. Therefore, in a real streaming environment,
where large volume of data appear at a high speed, only a small fraction of the data
can be labeled. Thus, only a limited number of instances will be available for train-
ing/updating the classification models, leading to poorly trained classifiers. We apply
a novel technique to overcome this problem by utilizing both unlabeled and labeled
instances to train/update the classification model. Each classification model is built as
a collection of micro-clusters using semi-supervised clustering, and an ensemble of these
models is used to classify unlabeled data using nearest neighbor algorithm. Empirical
evaluation on both synthetic and real data reveals that our approach, using only a small
amount of labeled data for training, outperforms state-of-the-art stream classification
algorithms that use five times more labeled data than our approach.

Keywords: Data stream classification, semi-supervised clustering, ensemble classifi-
cation, concept-drift.

1. Introduction

Data stream classification is a challenging problem because of two important
properties of the stream: its infinite length and evolving nature. Data streams
evolve when the joint probability distribution p(c, x) = p(c)p(x|c) changes over
time, where c denotes class label and x denotes feature vector. So, evolution
occurs under three circumstances. First, the prior probability distribution p(c)
changes. This happens if a new class emerges in the stream (concept-evolution).
Second, the conditional probability p(x|c) changes as a result of changes in the
underlying concept of the data (concept-drift). Finally, both p(c) and p(x|c)
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change. In any case, the challenge is to build a classification model that is con-
sistent with the current concept. Almost all of the existing data stream clas-
sification techniques [1, 7, 12, 14, 18, 21, 24, 29, 31] are based on an impractical
assumption that the true label of a data point becomes available immediately
after it is tested by the classifier. In other words, the data stream is assumed
to be “completely labeled”, meaning, the true labels of all historical data are
known. This assumption is impractical because manual labeling of data is usu-
ally costly and time consuming. So, in an streaming environment, where data
appear at a high speed, it is not possible to manually label all the data as soon
as they arrive. If it were possible, we would not need a classifier to begin with.
Thus, in practice, only a small fraction of the stream can be labeled by human
experts. So, the traditional stream classification algorithms would have very few
instances to update their model, leading to a poorly built classifier.

As an example, suppose an organization receives flight reports as text docu-
ments from all over the world, at a rate of thousand reports per day, and catego-
rizes the reports into different classes: “normal”, “minor mechanical problem”,
“minor weather problem”, “major mechanical problem”, ... , and so on. Based
on the categories, warning messages are sent to the corresponding airlines and
aviation authorities for proper action. Important decision-making actions such
as flight planning, resource allocation, and personnel assignment are affected by
these warnings. Therefore, timely delivery of these warnings is necessary to avoid
both financial loss, and customer dissatisfaction. Without loss of generality, sup-
pose only 200 of the reports can be labeled manually by human experts each day.
So, an automated stream document classification system is employed so that all
1,000 documents can be classified each day. If a traditional stream classification
technique is used, it will have to deal with a trade-off when updating the clas-
sifier. Either the classifier will have to be updated with only 200 labeled data
per day, or it will have to wait 5 days to be updated with all the 1,000 labeled
data that arrived today. None of the trade-offs are acceptable since the former
will lead to a poor classifier, and the latter will lead to an outdated classifier.
In order to completely avoid these problems, the organization must increase its
manpower (and cost) 5 times and classify all the 1,000 instances manually.

Considering these difficulties, we propose an algorithm that updates the ex-
isting classification model utilizing the available 200 labeled and 800 unlabeled
instances, while achieving the same or better classification accuracy than a classi-
fication model that is updated using 1,000 labeled instances. Thus, our approach
offers a practical data stream classifier that not only views the data stream
classification problem from a real perspective, but also provides a cost-effective
solution. Thus, our algorithm is capable of building efficient classification models
with a “partially labeled” data stream, compared to other stream classification
techniques that require “completely labeled” stream. By “partially labeled” we
mean only a fraction (e.g. 20%) of the instances in the data stream are labeled,
and by “completely labeled” we mean all (100%) the instances are labeled.

Naturally, stream data could be stored in buffer and processed when the
buffer is full, so we divide the stream data into equal sized chunks. We train a
classification model from each chunk. We propose a semi-supervised clustering
algorithm to create K clusters from the partially labeled training data [22]. A
summary of the statistics of the instances belonging to each cluster is saved
as a “micro-cluster”. The micro-clusters created from each chunk serve as a
classification model for the nearest neighbor algorithm. In order to cope with
concept-drift, we keep an ensemble of L models. Whenever a new model is built
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from a new data chunk, we update the ensemble by choosing the best L models
from the L+1 models (previous L models and the new model), based on their
individual accuracies on the labeled training data of the new data chunk. Besides,
we refine the existing models in the ensemble whenever a new class of data evolves
in the stream.

We have several contributions. First, we propose an efficient semi-supervised
clustering algorithm based on cluster-impurity measure. Second, we apply our
technique to classify evolving data streams. To the best of our knowledge, there
are no stream data classification algorithms that apply semi-supervised cluster-
ing. Third, we provide a solution to the more practical situation of stream clas-
sification when labeled data are scarce. We show that our approach, using only
20% labeled training data, achieves better classification accuracy in real life data
sets than other stream classification approaches that use 100% labeled training
data. We believe that the proposed method provides a promising, powerful, and
practical technique to the stream classification problem in general.

The rest of the paper is organized as follows: section 2 discusses related work,
section 3 provides an overview of the classification process, section 4 describes
the theoretical background and the implementation of the semi-supervised clus-
tering, section 5 discusses the ensemble classification and ensemble updating
process with micro-clusters, section 6 discusses data set and experimental setup,
and evaluation of our approach, section 7 discusses our findings and section 8
concludes with directions to future work.

2. Related work

Our work is related to both semi-supervised clustering and stream classification
techniques. We briefly discuss both of them.

Semi-supervised clustering techniques utilize a small amount of knowledge
available in the form of pairwise constraints (must-link, cannot-link), or class
labels of the data points. According to [4], semi-supervised clustering tech-
niques can be subdivided into two categories: constraint-based and distance-
based. Constraint-based approaches, such as [2, 9, 28] try to cluster the data
points without violating the given constraints. Distance-based techniques use
a specific distance metric or similarity measure (e.g. Euclidean distance), but
the distance metric is parameterized so that it can be adjusted to satisfy the
given constraints. Examples of the distance-based techniques are [8, 16, 20, 30].
Some recent approaches for semi-supervised clustering integrated the search-
based and constraint-based techniques into a unified framework, by applying
pairwise constraints on top of the unsupervised K-means clustering technique
and formulating a constrained K-means clustering problem ( [3,4,6]). These ap-
proaches usually apply the Expectation-Maximization (E-M) technique to solve
the constrained clustering problem.

Our approach follows the constraint-based technique, but it is different from
other constraint-based approaches. Most constraint-based approaches use pair-
wise constraints (e.g. [6], whereas we utilize a cluster-impurity measure based on
the limited labeled data contained in each cluster [22]. If pair-wise constraints
are used, then the running time per E-M step is quadratic in total number of
labeled points, whereas the running time is linear if impurity measures are used.
So, the impurity measures are more realistic in classifying a high-speed stream
data. Although Basu et al. [2] did not use any pair-wise constraints, they did not
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use any cluster-impurity measure either. However, Cluster-impurity measure was
used by Demiriz et al [9]. But they applied expensive genetic algorithms, and
had to adjust weights given to different components of the clustering objective
function to obtain good clusters. On the contrary, we apply E-M, and we do
not need to tune parameters to get a better objective function. Furthermore,
we use a compound impurity-measure rather than the simple impurity-measures
used in [9]. Besides, to the best of our knowledge, no other work applies a semi-
supervised clustering technique to classify stream data.

There have been many works in stream data classification. There are two
main approaches - single model classification, and ensemble classification. Some
single model classification techniques incrementally update their model when new
data arrives [15,26]. However, these techniques apply costly operations to update
the internal structure of the model, which is not suitable for a high-speed data
stream. Domingos and Hulten [11] propose a single model incremental algorithm
that can cope with the speed of the stream. However, these techniques are not
capable of handling concept-drift, which occurs frequently in data streams. Hul-
ten et al. [18] propose an incremental decision tree that can handle concept-drift
as well as high-speed of the data stream. However, in any incremental algorithm,
only the most recent data is used to update the model. Thus, contributions of
historical data are forgotten at a constant rate even if some of the historical data
are consistent with the current concept. So, the refined model may not appro-
priately reflect the current concept, and its prediction accuracy may not meet
the expectation.

In a non-streaming environment, ensemble classifiers like Boosting [13] are
popular alternatives to single model classifiers. But these are not directly appli-
cable to stream mining since they require multiple passes over the entire training
data, which is impractical for in an streaming environment. However, several en-
semble techniques for stream data mining have been proposed [12,14,21,24,29].
These ensemble approaches have the advantage that they can be more efficiently
built than updating a single model and they observe higher accuracy than their
single model counterpart [25].

Our approach is also an ensemble approach, but it is different from other
ensemble approaches in two aspects. First, previous ensemble-based techniques
use the underlying learning algorithm (such as decision tree, Naive Bayes, etc.)
as a black-box and concentrate only on optimizing the ensemble. But we concen-
trate mainly on building efficient classification models in an evolving scenario.
In this light, our work is more closely related with the work of Aggarwal et
al [1]. Secondly, previous techniques such as [1] require completely labeled train-
ing data. But in practice, a very limited amount of labeled data may be available
in the stream, leading to poorly trained classification models. We show that high
classification accuracy can be achieved even with limited amount of labeled data.

Aggarwal et al. [1] apply a supervised micro-clustering technique along with
horizon-fitting to classify evolving data streams. They have achieved higher ac-
curacy than other approaches that use fixed horizon or the entire dataset for
training. We also apply a micro-clustering technique. But there are two major
differences between our approach and this approach. First, we do not use horizon-
fitting for classification. Rather, we use a fixed-sized ensemble of classifiers. So,
we do not need to store historical snapshots, which allows us to save memory.
Second, we apply semi-supervised clustering, rather than supervised. Thus, we
need only a fraction of training data to be labeled, compared to a completely
labeled data that is required for the previous approach. Thus, our approach not
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Table 1. Symbols and terms
S : Chunk size K: Number of micro-clusters
L : Ensemble size P : Percentage of labeled data in each chunk
Di : A data chunk C : Number of classes in the stream
M : The ensemble M i : The i-th model in the ensemble
Labeled instance: An instance that has been correctly labeled
by an independent labeling mechanism (e.g. domain expert)
Partially labeled chunk: A data chunk having at least P% labeled instances
Completely labeled chunk: A data chunk having 100% labeled instances

only saves more memory, but also it is more applicable to a realistic scenario
where labeled data are scarce.

Our current work is an extension to the previous work [22]. In the previous
work, it was assumed that there were two parallel, disjoint streams: a training
stream and a test stream. The training stream contained the labeled instances,
and was used to train the models. The test stream contained the unlabeled
instances and was used for testing. However, this assumption was not so realistic
since in a real world scenario, labeled data may not be immediately available in
the stream, and therefore, it may not be possible to construct a separate training
stream. So, in this paper, we make a more realistic assumption that there is a
single continuous stream. Each data chunk in the stream is first tested by the
existing ensemble, and then the same chunk is used for training, assuming that
the instances in the chunk have been labeled. Thus, all the instances in the stream
are eventually tested by the ensemble. Besides, in this paper, we have described
our technique more elaborately and provided detailed understanding and proof
of the proposed framework. Finally, we have enriched the experimental results
by adding three more datasets, run more rigorous experiments, and reported
in-depth analyses of the results.

3. Top level description

At first, we informally define the data stream classification problem. We assume
that data arrive in chunks, as follows:

D1 =x1, ..., xS

D2 =xS+1, ..., x2S

...

...

Dn =x(n−1)S+1, ..., xnS

where xi is the i-th instance in the stream, S is the chunk size, Di is the i-the
data chunk, and Dn is the latest data chunk. Assuming that the class labels of
all the instances in Dn are unknown, the problem is to predict their class labels.
Let yi and ŷi be the actual and predicted class labels of xi, respectively. If ŷi=yi,
then the prediction is correct, otherwise it is incorrect. The goal is to minimize
the prediction error.

Table 1 explains the terms and symbols that are used throughout the pa-
per. Our approach will be referred to henceforth as “ReaSC”, which stands for
“Realistic Stream Classifier”. Figure 1 shows the top level architecture of ReaSC.

We train a classification model from a data chunk Di as soon as P% (P <<
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Fig. 1. Overview of ReaSC

100) randomly chosen instances from the chunk have been correctly labeled by
an independent labeling mechanism (e.g., human experts). Note that this as-
sumption is less strict than other stream classification techniques such as [29],
which assumes that all the instances of Di must have been labeled before it
can be used to train a model. We build the initial ensemble M of L models =
{M1, ...,ML} from the first L data chunks, where M i is trained from chunk Di.
Then the following algorithm is applied for each of the following chunk.

Algorithm 1 ReaSC
Input: Dn: Latest data chunk

M : current ensemble of L models {M1, ..., ML}
Output: Updated ensemble M
1: for all xi ∈ Dn do ŷi ← Classify(M ,xi) (section 5.1)

/* Assuming that P% instances in Dn has now been labeled */
2: M ′ ← Train(Dn) (section 4) /* Build a new model M ′ */
3: M ← Refine-Ensemble(M, M ′) (section 5.2)
4: M ← Update-Ensemble(M, M ′, Dn) (section 5.3)
5: return M

The main steps of algorithm 1 (ReaSC) are explained below.
1. Classification: The existing ensemble is used to predict the labels of

each instance in Dn using Nearest Neighbor (NN) classification, and majority
voting (section 5.1). As soon as Dn has been partially labeled, the following steps
are performed.

2. Training: Training is done by applying semi-supervised clustering on
the partially-labeled training data to build K clusters (section 4). The semi-
supervised clustering is based on the Expectation-Maximization(E-M) algorithm
that locally minimizes an objective function. The objective function takes into
account the dispersion between each point and its corresponding cluster centroid,
as well as the impurity-measure of each cluster. Then we extract a statistical
summary from the data points of each cluster, save the summary as a micro-
cluster, and remove the raw data points (section 4.4). In this way, we get a new
classification model M ′ that can be used to classify unlabeled data using the
nearest neighbor (NN) algorithm.

3. Ensemble refinement: In this step M ′ is used to refine the existing
ensemble of models if required (section 5.2). Refinement is required if M ′ contains
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Table 2. An example of ReaSC actions with stream progression

⇐
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Arrival of chunk Action(s)
D1 —
D2 M1 ← Train(D1)
... ...
... ...
DL+1 ML ← Train(DL), Initial model M = {M1, ..., ML}

∀xj ∈ DL+1 ŷj ← Classifiy(M ,xj)

DL+2 M ′ ← Train(DL+1)
M ← Refine-Ensemble(M ,M ′)
M ← Update-Ensemble(M ,M ′,DL+1)
∀xj ∈ DL+2 ŷj ← Classifiy(M ,xj)

... ...

... ...
DL+i M ′ ← Train(DL+i−1)

M ← Refine-Ensemble(M ,M ′)
M ← Update-Ensemble(M ,M ′,DL+i−1)
∀xj ∈ DL+i ŷj ← Classifiy(M ,xj)

... ...

... ...

some data of a particular class c, but no model in the ensemble M contains any
data of that class. This situation may occur because of concept-evolution. In this
case, the existing ensemble M does not have any knowledge of class c, and so, it
must be refined so that it learns to classify instances of this class. Refinement is
done by injecting micro-clusters of M ′, which contain labeled instances of class
c, into the existing models of the ensemble.

4. Ensemble update: In this step, we select the best L models from the
L+1 models: M ∪{M ′}, based on their accuracies on the labeled instances of Dn

(section 5.3). These L best models construct the new ensemble M . The ensemble
technique helps the system to cope with concept-drift.

Table 2 illustrates an schematic example of ReaSC. In this example, we as-
sume that P% data in data chunk Di are labeled by the time chunk Di+1 arrives.
The initial ensemble is built with the first L chunks. Then the ensemble is used
to classify the latest chunk (DL+1). From the next (L+2nd) chunk onward, a
sequence of operations are performed with the arrival of a new chunk. For exam-
ple, the sequence of operations at the arrival of chunk DL+i (i > 1) is as follows:
i) The previous chunk DL+i−1 has been partially labeled by now. Train a new
model M ′ using DL+i−1.
ii) Refine the existing ensemble M using the new model M ′.
iii) Update the ensemble M by choosing the best L models from M ∪ {M ′}.
iv) Classify each instance in DL+i using ensemble M .

4. Training with limited labeled data

As mentioned earlier, we train a classification model from each partially la-
beled data chunk. The classification model is a collection of K micro-clusters
obtained using semi-supervised clustering. Training consists of two basic steps:
semi-supervised clustering, and storing the cluster summaries as micro-clusters.

In the semi-supervised clustering problem, we are given a set of m data points
X = {x1, ..., xl, xl+1, ..., xm}, where the first l instances are labeled, i.e., yi ∈
{1, ..., C}, i ≤ l, and the remaining instances are unlabeled; C being the total
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number of classes. We assign the class label yi=0 for all unlabeled instance xi,
i > l. We are to create K clusters, maintaining the constraint that all points in
the same cluster have the same class label. We restrict the value of parameter
K to be greater than C, since intuitively, there should be at least one cluster for
each class of data. We’ll first re-examine the unsupervised K-means clustering in
section 4.1 and then propose a new semi-supervised clustering technique using
cluster-impurity minimization in section 4.2.

4.1. Unsupervised K-means clustering

The unsupervised K-means clustering creates K-partitions of the data points
based on the only available information, the similarity/dispersion measure among
the data points. The objective is to minimize the sum of dispersion between each
data point and its corresponding cluster centroid (i.e., intra-cluster dispersion).
Given m unlabeled data points X = {x1, x2, ..., xm}, K-means creates K-
partitions {X1, ...,XK} of X , minimizing the objective function:

OKmeans =
K∑

i=1

∑

x∈Xi

||x − ui||
2 (1)

where ui is the centroid of cluster i, and ||x − ui|| is the Eucledian distance
between x and ui.

4.2. K-means clustering with cluster-impurity minimization

Given a limited amount of labeled data, the goal for K-means with Minimization
of Cluster Impurity (MCI-Kmeans) is to minimize the intra-cluster dispersion
(same as unsupervised K-means) and at the same time minimize the impurity of
each cluster. A cluster is completely pure if it contains only unlabeled instances,
or labeled instances from only one class. Thus, the objective function should
penalize each cluster for being impure. The general form of the objective function
is as follows:

OMCIKmeans =

K∑

i=1

∑

x∈Xi

||x − ui||
2 +

K∑

i=1

Wi ∗ Impi (2)

where Wi is the weight associated with cluster i and Impi is the impurity of
cluster i. In order to ensure that both the intra-cluster dispersion and cluster
impurity are given the same importance, the weight associated with each cluster
should be adjusted properly. Besides, we would want to penalize each data point
that contributes to the impurity of the cluster. So, the weight associated with
each cluster is chosen to be

Wi = |Xi| ∗ D̄Xi
(3)

where Xi is the set of data points in cluster i and D̄Xi
is the average dispersion

of each of these points from the cluster centroid. Thus, each instance has a
contribution to the total penalty, which is equal to the cluster impurity multiplied
by the average dispersion of the data points from the centroid. We observe that
equation (3) is equivalent to the sum of dispersions of all the instances from the
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cluster centroid. That is, we may rewrite equation (3) as:

Wi =
∑

x∈Xi

||x − ui||
2

Substituting this value of Wi in equation (2) we obtain:

OMCIKmeans =

K∑

i=1

∑

x∈Xi

||x − ui||
2 +

K∑

i=1

∑

x∈Xi

||x − ui||
2 ∗ Impi

=
K∑

i=1

(
∑

x∈Xi

||x − ui||
2(1 + Impi)) (4)

Impurity measures: Equation (4) should be applicable to any impurity mea-
sure in general. Entropy and Gini index are most commonly used impurity mea-
sures. We use the following impurity measure: Impi = ADCi∗Enti, where ADCi

is the “aggregated dissimilarity count” of cluster i and Enti is the entropy of
cluster i. The reason for using this impurity measure will be explained shortly.
In order to understand ADCi, we first need to define “Dissimilarity count”.

Definition 1 (Dissimilarity count). Dissimilarity count DCi(x, y) of a data
point x in cluster i having class label y is the total number of instances in that
cluster having class label other than y.

In other words,

DCi(x, y) = |Xi| − |Xi(y)| (5)

where Xi(y) is the set of instances in cluster i having class label = y. Recall that
unlabeled instances are assumed to have class label = 0. Note that DCi(x, y) can
be computed in constant time, if we keep an integer vector to store the counts
|Xi(c)|, c ∈ {0, 1, .., C}. “Aggregated dissimilarity count” or ADCi is the sum of
the dissimilarity counts of all the points in cluster i:

ADCi =
∑

x∈Xi

DCi(x, y). (6)

Entropy of a cluster i is computed as:

Enti =

C∑

c=0

(−pi
c ∗ log(pi

c))

where pi
c is the prior probability of class c, i.e.,

pi
c =

|Xi(c)|

|Xi|
. (7)

The use of Enti in the objective function ensures that clusters with higher en-
tropy get higher penalties. However, if only Enti had been used as the impurity
measure, then each point in the same cluster would have received the same
penalty. But we would like to favor the points belonging to the majority class
in a cluster, and disfavor the points belonging to the minority classes. Doing so
would force more points of the majority class to be moved into the cluster, and
more points of the minority classes to be moved out of the cluster, making the
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clusters purer. This is ensured by introducing ADCi to the equation. We call the
combination of ADCi and Enti as “compound impurity measure” since it can
be shown that ADCi is proportional to the “gini index” of cluster i. Following
from equation (6), we obtain

ADCi =
∑

x∈Xi

DCi(x, y) =
C∑

c=0

∑

x∈Xi(c)

DCi(x, y)

=

C∑

c=0

∑

x∈Xi(c)

(|Xi| − |Xi(c)|) (using equation 5)

=

C∑

c=0

(|Xi(c)|)(|Xi| − |Xi(c)|) = (|Xi|)
2

C∑

c=0

(
Xi(c)

Xi

)(1 −
Xi(c)

Xi

)

= (|Xi|)
2

C∑

c=0

(pi
c)(1 − pi

c) (using equation 7)

= (|Xi|)
2(1 −

C∑

c=0

(pi
c)

2) = (|Xi|)
2 ∗ Ginii

where Ginii is the gini index of cluster i.

4.3. Optimizing the objective function with Expectation
Maximization (E-M)

The problem of minimizing equation (4) is an incomplete-data problem because
the cluster labels and the centroids are all unknown. The common solution to
this problem is to apply E-M [10]. The E-M algorithm consists of three basic
steps: initialization, E-step and M-step. Each of them is discussed here.

Initialization with proportionate cluster distribution: For each class
c appearing in the data, we initialize kc ≤ K centroids by choosing kc points
from the labeled data of class c. The ratio of kc to K is chosen to be equal to the
ratio of the number of labeled points having class label c to the total number of

labeled points in the dataset. That is, kc = K ∗ |L(c)|
|L| , c ∈ {1, ..., C}, where L is

the set of all labeled points in X , and L(c) is the subset of points in L belonging
to class c. We observed in our experiments that this initialization works better
than initializing equal number of centroids of each class. This is because if we
initialize the same number of centroids from each class, then larger classes (i.e.,
classes having more instances) tend to create larger and sparser clusters, which
leads to poorer classification accuracy for the nearest neighbor classification.

Let there be ηc labeled points of class c in the dataset. If ηc > kc, then
we choose kc centroids from ηc points using the farthest-first traversal heuristic
[17]. To apply this heuristic, we first initialize a “visited set” of points with a
randomly chosen point having class label c. At each iteration, we find a point
xj of class c that maximizes the minimum distance from all points in the visited
set, and add it to the visited set. This process continues until we have kc points
in the set. If ηc < kc, then we choose remaining centroids randomly from the
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unlabeled points. After initialization, E-Step and M-Step are iterated until the
convergence condition is fulfilled.

E-Step: In E-Step, we assign each data point x to a cluster i such that its
contribution to the global objective function, OMCIKeans(x), is minimized:

OMCIKeans(x) =||x − ui||
2 ∗ (1 + Enti ∗ DCi(x, y))

Note that the value of the global objective function OMCIKeans depends on the
order in which the labeled points are assigned to clusters. It is computationally
intractable to try all possible orderings and choose the best one. However, there
are some heuristic approaches that approximate the optimal solution. We follow
the iterative conditional mode or ICM algorithm [5]. This is implemented as
follows : at each iteration of ICM, we first randomly order the points. Then we
assign the points (in that order) to the cluster i that minimizes OMCIKeans(x).
This is continued until no point changes its cluster in successive iterations, which
indicates convergence. According to [5], ICM is guaranteed to converge. The E-
step completes after termination of ICM, and the program moves to the M-step.

M-Step: In the M-Step, we re-compute each cluster centroid by averaging
all the points in that cluster:

ui =

∑
x∈Xi

x

|Xi|
(8)

After performing this step, the convergence condition is checked. If fulfilled,
the procedure terminates, otherwise another iteration of E-Step and M-Step is
performed.

4.4. Storing the classification model

After building the K clusters, we create a summary of the statistics of the data
points belonging to each cluster. The summary contains the following statistics:
i) N : the total number of points; ii) Lt: the total number of labeled points; iii)
{Lp[c]}C

c=1: a vector containing the total number of labeled points belonging to
each class. iv) u: the centroid of the cluster. v) ĉ: the majority class, i.e., the
class having the highest frequency in the micro-cluster. This summary will be
referred to henceforth as a “micro-cluster”. Note that with these statistics, the
additive property of micro-clusters [1] remains valid. This property is essential
for merging two micro-clusters. After creating the micro-clusters, we discard the
raw data points. Besides, we also discard all micro-clusters that do not contain
any labeled point ( i.e., have Lt = 0) because these micro-clusters do not play any
role in classification. The remaining set of micro-clusters serve as a classification
model. Note that the number of micro-clusters in the model will become less
than K if any such deletions take place.

5. Ensemble classification

The ensemble consists of L models, where each model is trained with a partially
labeled data chunk according to section 4. The initial ensemble consists of the
first L models trained with the first L chunks in the stream. The ensemble is used
to classify future unlabeled instances. Besides, the ensemble undergoes several
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modifications in each successive chunk to keep it up-to-date with the most recent
concept.

5.1. Classification

Classification is done using nearest neighbor technique. In order to classify an
unlabeled data point x with a model M i, we perform the following steps: i)
find the nearest micro-cluster from x in M i, by computing the distance between
the point and the centroids of the micro-clusters. ii) select the class with the
highest frequency of labeled instances as the predicted class of x. Recall that
the frequencies of labeled instances for each class are stored in the micro-cluster
data structure. In order to classify x with the ensemble M , we perform the
following steps: i) find the nearest micro-cluster from x in each model M i ∈ M .
Let the nearest micro-cluster from x in M i be M i

min ii) select the class with
the highest “cumulative frequency” in these L micro-clusters {M1

min, ...,ML
min}

as the predicted class of x. The classification by the ensemble can be thought
of a kind of majority voting among all the voters (i.e., labeled points) in the L
nearest micro-clusters {M1

min, ...,ML
min}.

As an example, suppose there are three models (M1, M2, M3) in the ensemble
(i.e., L=3), and C=2. The nearest micro-clusters from the test point x in M1,M2

and M3 have the following class frequencies, respectively: [1,5],[3,1], and [0,3],
where the first number in each pair represents the frequency of class c=1, and
the second number represents the frequency of class c=2. Since the class-wise
cumulative frequencies of the three micro-clusters are [1+3+0,5+1+3] = [4,9],
the predicted label of x by the ensemble M will be ŷ = 2.

5.2. Ensemble refinement

After a new model M ′ has been trained with a partially labeled data chunk, the
existing ensemble M is refined with this model (line 3, algorithm 1). Refinement
is done if the latest partially labeled data chunk Dn contains a class c, which is
absent in all models of the ensemble M . This is possible if either a completely
new class appear in the stream or an old class re-appears that has been absent in
the stream for a long time. Both of these happens because of concept-evolution,
and the class c is denoted as an evolved class. Note that there may be more
than one evolved classes in the stream. If there is any evolved class, M must be
refined so that it can correctly classify future instances of that class. Algorithm
2 describes how the existing model is refined.

Description of “Refine-Ensemble” (algorithm 2): The algorithm starts
(line 1) by checking whether ensemble refinement is needed. This can be done in
constant time by keeping a boolean vector V of size C per model, and setting
V [c] = true during training if there is any labeled training instance from class
c. The function Need-to-refine(M) checks whether there is any class c such that
V [c] is false for all models M i ∈ M , but true for M ′. If there is such a class
c, then c is an evolved class. Refinement is needed only if there is an evolved
class. Then the algorithm looks into each micro-cluster M ′

j of the new model M ′

(line 2). If the majority class of M ′
j is an evolved class (line 3), then we do the

followings: for each model M i ∈ M , we inject the micro-cluster M ′
j in M i (line

7). Before injecting a micro-cluster, we try to merge the closest pair of micro-
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Algorithm 2 Refine-Ensemble

Input: M : current ensemble of L models {M1, ..., ML}
M ′: the new model built from the new data chunk Dn

Output: Refined ensemble M
1: if Need-to-refine(M)=false then return M
2: for each micro-cluster M ′

j ∈M ′ do

3: if the majority class of M ′

j is an evolved class then

4: for each Model M i ∈M do
5: Q ← The closest pair of micro-clusters in M i having the same majority class
6: if Q 6= null and |M i| = K then Merge the pair of micro-clusters in Q
7: M i ← M i ∪M ′

j /* Injection */

8: end for
9: end if

10: end for
11: return M

clusters in M i having the same majority class (line 6). This is done to keep the
number of micro-clusters constant (=K). However, merging is done only if such
a closet pair is found, and |M i|, the total number of micro-clusters in M i equals
K. Note that the first condition may occur (i.e., no such closest pair found) if
|M i| < C. In this case, |M i| is incremented after the injection. This ensures that
if C, the number of classes, increases due to concept-evolution, the number of
micro-clusters in each model also increases. In the extreme case (not shown in
the algorithm) when C exceeds K due to evolution, K is also incremented to
ensure that the relation K > C remains valid. The reasoning behind the refine-
ment is as follows. Since no model in ensemble M has knowledge of an evolved
class c, the models will certainly misclassify any data belonging to the class. By
injecting micro-clusters of the class c, we introduce some data from this class
into the models, which reduces their misclassification rate.

It is obvious that when more training instances are provided to a model, its
classification error is more likely to reduce. However, if the same set of micro-
clusters are injected in all the models, the correlation among the models may
increase, resulting in reduced prediction accuracy of the ensemble. According
to [25], if the errors of the models in an L-model ensemble are independent,
then the added error (i.e., the error in addition to Bayes error) of the ensemble
is 1/L times the added error of a single model. However, the ensemble error
may be higher if there is correlation among the errors of the models. But even
if correlation is introduced by injecting the micro-clusters, according to the fol-
lowing lemma (lemma 1), under certain conditions the overall added error of
the ensemble is reduced after injection. The lemma is based on the assumption
that after injection, single model error monotonically decreases with increasing
prior probability of class c. In other words, we assume that there is a continuous
monotonic decreasing function f(x), f(x) ∈ [0, 1] and x ∈ [0, 1], such that

E = f(γc) ∗ E
0 (9)

where E0 and E are the single model errors before and after injection, and γc is
the prior probability of class c. This function has the following special property:
f(0) = 1, since γc=0 means class c has not appeared at all, and no injection has
been made. Lemma 1 quantifies an upper bound of the function that is necessary
for ensemble error reduction.

Lemma 1. Let c be the evolved class, E0
M and EM be the added errors of the
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ensemble before and after injection; E0 and E be the added errors of a single
model before and after injection, and γc be the prior probability of class c. Then
the injection process will reduce the added error of the ensemble provided that

f(γc) ≤
1

1 + γ2
c (L − 1)

.

where L is the ensemble size.

Proof: According to [25],

EM = E ∗
1 + δ(L − 1)

L
(10)

where L is the total number of models in the ensemble, and δ is the mean
correlation among the models, given by:

δ =

C∑

i=1

γiδi (11)

where γi is the prior probability of class i and δi is the mean correlation associated
with class i, given by [25]:

δi =
1

L(L − 1)

L∑

m=1

∑

l 6=m

Corr(ηm
i , ηl

i) (12)

where Corr(ηm
i , ηl

i) is the correlation between ηm
i , the error of model m, and

ηl
i, the error of model l. For simplicity, we assume that the correlation between

two models is proportional to the number of instances that are common to both
these models. That is, the correlation is 1 if they have all instances in common,
and 0 if they have no instances in common. So, before injection, the correlation
between any pair of models is zero (since the models are trained using disjoint
training data). As a result,

E0
M =

E0

L
(13)

After injection, some instances of class c may be common among a pair of
models, leading to δc ≥ 0, where c is the evolved class.

Consider a pair of models m and l whose prior probabilities of class c are γm
c

and γl
c, respectively, after injection. So, the correlation between m and l reduces

to:

Corr(ηm
c , ηl

c) =
1

2
(γm

c + γl
c)

Substituting this value in equation (12), we obtain

δc =
1

L(L − 1)

1

2

L∑

m=1

∑

l 6=m

(γm
c + γl

c)

=
1

L(L − 1)

1

2
2(L − 1)

L∑

m=1

(γm
c ) =

1

L

L∑

m=1

(γm
c ) = γ̄c (14)

where γ̄c is the mean prior probability of class c in each model. Note that the
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mean prior probability γ̄c represents the actual prior probability γc, so they can
be used interchangeably. Substituting this value of δi in equation (11),

δ =

C∑

i=1

γiδi = γcδc +

C∑

i=1,i 6=c

γiδi = (γc)
2 + 0 = (γc)

2

since δi = 0 for all non-evolved class as no instance of those classes is common
between any pair of models. Now, substituting this value of δ in equation (10),
we obtain

EM = E ∗
1 + γc

2(L − 1)

L

= f(γc) ∗ E
0 ∗

1 + γc
2(L − 1)

L
using (9)

=
E0

L
∗ (f(γc) ∗ (1 + γc

2(L − 1))

= E0
M ∗ (f(γc) ∗ (1 + γc

2(L − 1)) using (13) (15)

Now, we will have an error reduction provided that EM ≤ E0
M , which leads to:

(f(γc) ∗ (1 + γ2
c (L − 1)) ≤ 1

f(γc) ≤
1

1 + γ2
c (L − 1)

�

From lemma 1, we can infer that the function f(.) becomes more restricted as the
value of γc and/or L are increased. For example, for γc = 0.5, if L=10, then f(γc)
must be ≤ 0.31, meaning, E ≤ 0.31 ∗ E0 is required for error reduction. For the
same value of γc, if L=2, then E ≤ 0.8∗E0 is required for error reduction. However,
in our experiments, we have always observed error reduction after injection, i.e.,
inequality (15) has always been satisfied. Still, we recommend that the value of
L be kept within 10 for minimizing the risk of violating inequality (15).

5.3. Ensemble update

After the refinement, the ensemble is updated to adapt to the concept-drift
in the stream. This is done as follows. We have now L+1 models: L models
from the ensemble and the newly trained model M ′. One of these L+1 models is
discarded, and the rest of them construct the new ensemble. The victim is chosen
by evaluating the accuracy of each of these L+1 models on the labeled instances
in the training data Dn. The model having the worst accuracy is discarded.

5.4. Time complexity

The ensemble training process consists of three main steps: 1) creating clus-
ters using E-M, 2) refining the ensemble, and 3) updating the ensemble. Step
2) requires O(KL) time, and step 3) requires O(KLPS) time, where P is the
proportion of labeled data (P ≤ 1) in the chunk and S is the chunk-size. Step 1)
(E-M) requires O(KSIicmIem) time, where Iicm is the average number of ICM
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iterations per E-step and Iem is the total number of E-M iterations. Although
it is not possible to find the exact values of Iicm and Iem analytically, we obtain
an approximation by observation. We observe from our experiments that Iem

depend only on the chunk-size S, and Iicm is constant (≈2) for any dataset. On
average, a data chunk having 1000 instances requires 10 E-M iterations to con-
verge. This increases sub-linearly with chunks-size. For example, a 2000 instance
chunk requires 14 E-M iterations and so on. There are several reasons for this
fast convergence of E-M, such as: 1) proportionate initial seed selection from the
labeled data using farthest-fast traversal, and 2) using the compound impurity
measure in the objective function. Therefore, the overall time-complexity of the
ensemble training process of SmSCluster is O(KS ∗ (LP + g(S))), where g(.)
is a sub-linear function. This complexity is almost linear in S for a moderate
chunk-size. The time complexity of ensemble classification is O(KLS), which is
also linear in S for a fixed value of K and L.

6. Experiments

In this section we discuss the data sets used in the experiments, the system setup,
and the results.

6.1. Dataset

We apply our technique on two synthetic and two real datasets. We generate two
different kinds of synthetic datasets: concept-drifting, and concept-drifting with
concept-evolving. The former dataset simulates only concept-drift, whereas the
latter simulates both concept-drift and concept-evolution. One of the two real
datasets is the 10% version of the KDD cup 1999 intrusion detection dataset [19].
The other one is the Aviation Safety Reporting Systems (ASRS) dataset obtained
from NASA [23]. All of these datasets are discussed in the following paragraphs.

Concept-drifting synthetic dataset (SynD): We use this dataset in order
to show that our approach can handle concept-drift. SynD data are generated
using a moving hyperplane technique. The equation of a hyperplane is as follows:

d∑

i=1

aixi = a0.

where d is the total number of dimensions, ai is the weight associated with

dimension i, and xi is the value of ith dimension of a datapoint x. If
∑d

i=1 aixi ≤
a0, then an example is considered as negative, otherwise it is considered positive.
Each instance is a randomly generated d-dimensional vector {x1, ..., xd}, where
xi ∈ [0, 1]. Weights {a1, ..., ad} are also randomly initialized with a real number
in the range [0, 1]. The value of a0 is adjusted so that roughly the same number
of positive and negative examples are generated. This can be done by choosing

a0 = 1
2

∑d

i=1 ai. We also introduce noise randomly by switching the labels of p%
of the examples, where p=5 is set in our experiments.

There are several parameters that simulate concept drift. Parameter m spec-
ifies the percent of total dimensions whose weights are involved in changing, and
it is set to 20%. Parameter t specifies the magnitude of the change in every N
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examples. In our experiments, t is varied from 0.1 to 1.0, and N is set to 1000.
si, i ∈ {1, ..., d} specifies the direction of change for each weight. Weights change
continuously, i.e., ai is adjusted by si.t/N after each example is generated. There
is a possibility of r% that the change would reverse direction after every N ex-
amples are generated. In our experiments, r is set to 10%. We generate a total
of 250,000 instances and divide them into equal-sized chunks.

Concept-drifting with Concept-evolving synthetic dataset (SynDE):
SynDE dataset simulates both concept-drift and concept-evolution. That is, new
classes appear in the stream as well as old classes disappear, and at the same
time, the concept for each class gradually changes over time. The dataset size is
varied from 100K to 1000K points. Number of class labels are varied from 5 to
40, and data dimensions are varied from 20 to 80. Data points belonging to each
class are generated by following a Normal distribution having different mean
(-5.0 to +5.0) and variance (0.5 to 6) for different classes. In order to simulate
the evolving nature of data streams, the prior probabilities of different classes
are varied with time. This has caused some classes to appear and some other
classes to disappear at different times in the stream history. In order to simulate
the drifting nature of the concepts, the class mean for each class are gradually
changed in a way similar to the Syn-D dataset. Different synthetic datasets are
identified by an abbreviation: <size> C <#of classes> D <#of dimensions>.
For example, 300KC5D20 denotes a dataset having 300K points, 5 classes and
20 dimensions.

Real dataset-KDDCup 99 network intrusion detection (KDD): This
dataset contains TCP connection records extracted from LAN network traffic at
MIT Lincoln Labs over a period of two weeks. We have used the 10% version
of the dataset, which is more concentrated than the full version. Here different
classes appear and disappear frequently. Each instance in the dataset refers to
either to a normal connection or an attack. There are 22 types of attacks, such as
buffer-overflow, portsweep, guess-passwd, neptune, rootkit, smurf, spy, etc. So,
there are 23 different classes of data, Most which are normal. Each record consists
of 42 attributes, such as connection duration, the number bytes transmitted,
number of root accesses, etc. we use only the 34 continuous attributes, and
remove the categorical attributes.

Real dataset-Aviation Safety Reporting Systems (ASRS): This dataset
contains around 150,000 text documents. Each document is actually a report
corresponding to a flight anomaly. There are a total of 55 anomalies, such as
“aircraft equipment problem : critical”, “aircraft equipment problem : less se-
vere”, “inflight encounter : birds”, “inflight encounter : skydivers”, “maintenance
problem : improper documentation” etc. Each of these anomalies is considered as
a “class”. These documents represent a data stream since it contains the reports
in order of their creation time, and new reports are being added to the dataset
on a regular basis.

We perform several preprocessing steps on this dataset. First, we discard the
classes that contain very few (less than 100) documents. We choose 21 classes
among the 55, which reduced the total number of selected documents to 125,799.
Second, we extract word features from this corpus, and select the best 1000
features based on information gain. Then each document is transformed into a
binary feature vector, where the value corresponding to a feature is “one” if the
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feature (i.e., word) is present, or “zero” if it is not present in the document.
The instances in dataset are multi-label, meaning, an instance may have more
than one class label. We transform the multi-label classification problem into 21
separate binary classification problems by generating 21 different datasets from
the original dataset, one for each class. The dataset for i-th class is generated
by marking the instances belonging to class i as positive, and all other instances
as negative. When reporting the accuracy, we report the average accuracy of the
21 datasets.

6.2. Experimental setup

Hardware and software: We implement the algorithms in Java. The experi-
ments were run on a Windows-based Intel P-IV machine with 2GB memory and
3GHz dual processor CPU.

Parameter settings: The default parameter settings are as follows, unless men-
tioned otherwise:
i) K (number of micro-clusters) = 50 for all datasets;
ii) S (chunk size) = 1,600 records for real datasets, and 1,000 records for syn-
thetic datasets;
iii) L (ensemble size) = 10 for all datasets;

Baseline method: We compare our algorithm with “On Demand Stream”,
propsoed by Aggarwal et al [1]. We will refer to this approach as “OnDS”. We
run our own implementation of the OnDS and report the results. For the OnDS,
we use all the default values of its parameters, and set buffer-size = 1,600 and
stream-speed = 80 for real datasets, and buffer-size = 1,000 and stream-speed
= 200 for synthetic datasets, as proposed by the authors. However, in order to
ensure a fair comparison, we make a small modification to the original OnDS
algorithm. The original algorithm assumed that in each data chunk, 50% of the
instances are labeled, and the rest of them are unlabeled. The labeled instances
were used for training, and the unlabeled instances are used for testing and val-
idation. As mentioned earlier, this assumption is even more impractical than
assuming that a single stream contains both training and test instances. There-
fore, in the modified algorithm, we assume that all the instances in a new data
chunk are unlabeled, and test all of them using the existing model. After testing,
the data chunk is assumed to be completely labeled, and all the instances are
used for training.

When training ReaSC, we consider that only 20% randomly chosen instances
in a chunk have labels (i.e., P=20), whereas for training OnDS, 100% instances
in the chunk are assumed to have labels. So, if there are 100 data points in
a chunk, then OnDS has 100 labeled training data points, but ReaSC has only
20 labeled and 80 unlabeled training instances. Also, for a fair comparison, the
chunk-size of ReaSC is always kept equal to the buffer size of OnDS. Note that
P is not a parameter of ReaSC, rather, it is a threshold assigned by the user
based on the available system resources to label data points.

Evaluation: For each competing approach, we use the first 3 chunks to build
the initial classification model, which can be thought of as an warm-up period.
From the 4th chunk onward, we first evaluate the classification accuracy of the
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Fig. 2. Cumulative accuracy (a) and ROC curve (b) for SynD dataset

model on that chunk, then use the chunk as training data to update the model.
Each method is run 20 times on each dataset, and the average result is reported.

6.3. Comparison with baseline methods

Figures 2(a)-5(b) compare the accuracies and receiver operating characteristic
(ROC) curves for each dataset. Each of these graphs is generated by averaging
20 runs for each method for the same parameter settings.

Figure 2(a) shows the cumulative accuracy of each competing method for
each chunk on SynD dataset. In this figure, the X-axis represents chunk number
and the Y-axis represents accuracy of a particular method from the beginning
of the stream. For example, in figure 2(a) at chunk 250 (X=250), the Y values
for ReaSC and OnDS represent the cumulative accuracies of ReaSC and OnDS
from the beginning of the stream to chunk 250, which are 82.61% and 73%,
respectively. This curve shows that as the stream progresses, accuracy of OnDS
declines. This is because OnDS is not capable of handling concept-drift properly.
Figure 2(b) shows the ROC curve for SynD dataset. The ROC curve is a good
visual representation of the overall performance of a classifier in classifying all the
classes correctly. Sometimes only the accuracy measure does not properly reflect
the true classification performance if the class distribution is skewed. ROC curves
reflect the true performance even if the class distributions are skewed. The area
under the ROC curve (AUC) is higher for a better classifier. The AUCs for each
ROC curve is reported in each graph. For the SynD dataset, AUC of ReaSC is
almost 10% higher than that of OnDS.

Figure 3(a) shows the chunk number versus cumulative accuracy for SynDE
dataset. In this dataset, ReaSC performs better (90%) than SynD because SynDE
is generated using Gaussian distribution, which is easier to learn for ReaSC. On
the other hand, accuracy of OnDS is much worse in this dataset. In fact, the
average accuracy of OnDS is always less than 55%. Recall that SynDE simulates
both concept-drift and concept-evolution. Since OnDS performance poorly in a
dataset having only concept-drift, it is natural that it performs even poorer in
a dataset that has an additional hurdle: concept-evolution. The ROC of ReaSC
on this dataset shown in figure 3(b) also has more than 20% higher AUC than
OnDS.
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Table 3. Comparison of running time (excluding labeling time) and classification speed be-
tween OnDS (with 100% labeled data) and ReaSC (with 20% labeled data)

DataSet Time (sec/1000 pts) Classification speed (pts/sec)
OnDS ReaSC OnDS ReaSC

(100% labeled) (20% labeled) (100% labeled) (20% labeled)
SynD 0.88 1.34 1,222 6,248
SynDE 1.57 1.72 710 4,033
KDD 1.54 1.32 704 3,677
ASRS 30.90 10.66 38 369

Figures 4(a) and 4(b) show the chunk no vs. cumulative accuracy and ROC
curves for KDD dataset. KDD dataset has a lot of concept-evolution, almost
all of which occur within the first 120 chunks. The accuracy of OnDS is 2-12%
lower than ReaSC in this region. So, ReaSC handles concept-evolution better
than OnDS in real data too. However, in KDD dataset, most of the instances
belong to the “normal” class. As a result, the class distribution is skewed, and
simple accuracy does not reflect the true difference in performances. The ROC
curves shown in 4(b) reflects the performances of these two methods more pre-
cisely. The AUC of ReaSC is found to be 10% higher than OnDS, which is a
great improvement. Finally, figures 5(a) and 5(b) show the accuracy and ROC
curves for ASRS dataset. Recall that these graphs are generated by averaging
the accuracies and ROC curves from 21 individual binary classification results.
Again, here ReaSC achieves 3% or higher accuracy than OnDS in all stream
positions. Besides, the AUC of ReaSC in this dataset is 8% higher than OnDS.
OnDS performs comparatively better in this dataset because this dataset does
not have any concept-drift.

Again recall that in all these experiments, OnDS uses 5 times more labeled
data for training than ReaSC, still ReaSC outperforms OnDS in all datasets,
both in accuracy and AUC.

6.4. Running times, scalability, and memory requirement

Table 3 compares the running times and classification speeds between ReaSC
and OnDS. The columns headed by “Time (sec/1000 pts)” report the total run-
ning times (training plus testing) in seconds per thousand points of each of these
methods. Note that these running times do not consider the data labeling time,
which is an essential part of classifier training, and is a major bottleneck for
OnDS, to be explained shortly. The columns headed by “classification speed
(pts/sec)” report classification speed of each of these methods in points per sec-
ond. The total running times of ReaSC in synthetic datasets are slightly higher
than OnDS, but lower in real datasets. It is worth mentioning that the dimen-
sions of the datasets are in increasing order : (SynD=10, SynDE=20, KDD=34,
ASRS=1000), so are the running times. Both OnDS and ReaSC appear to have
linear growth of running time with increasing dimensionality and class labels.
But the running time of OnDS certainly grows at a higher rate than that of
ReaSC with the increasing number of dimensions and class labels, as suggested
by the the data presented in table 3. This is because, there is a classification
overhead associated with OnDS, which increases with both stream length, data
dimension and class labels, but there is no such overhead with ReaSC. The rea-
son is that OnDS keeps snapshots of the micro-clusters for different time-stamps
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Table 4. Comparison of running time including labeling time for real datasets
DataSet Labeling time (sec/1000 pts) Total time (sec/1000 pts)

OnDS ReaSC OnDS ReaSC
(100% labeled) (20% labeled) (100% labeled) (20% labeled)

KDD 1,000 200 1,001.54 201.32
ASRS 60,000 12,000 60,030.92 12,010.66
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Fig. 6. Running times on different datasets having higher dimensions (D) and number of
classes (C)

in stream history. When classification is needed, OnDS needs to find the best
time horizon by searching through the saved snapshots. This searching time is
directly related with the data dimension, number of class labels, and stream
length. As a result, OnDS takes relatively higher time on higher dimensions and
larger datasets than ReaSC. As also shown in the table, classification speed of
OnDS is much lower than ReaSC for the same reason.

If we include data labeling time, we get a more real picture of the total
running time. Suppose the labeling time for each data point for KDD dataset is
1 sec, and the same for ASRS dataset is 60 seconds. In fact, real annotation times
would be much higher for any text dataset [27]. Table 4 shows the comparison.
The labeling time for OnDS is 5 times higher than that of ReaSC, since per 1,000
instances OnDS requires 1,000 instances to have label, whereas ReaSC requires
only 200 instances to have label. The net effect is, ReaSC is 5 times faster than
OnDS in both datasets.

In figure 6, we report the scalability of ReaSC on high-dimensional and multi-
class SynDE data. This graph reports the running times of ReaSC for different
dimensions (20-60) of synthetic data with different number of classes (10-40).
Each of these synthetic datasets has 250K points. For example, for C=10, and
D=20, the running time is 431 seconds, and it increases linearly with the number
of classes in the data. On the other hand, for a particular value of C (e.g. D=20),
the running time increases very slowly (linearly) with increasing the number of
dimensions in the data. For example, for C=10, running times for 20, 40, and 60
dimensions of datasets are 431, 472, and 522 seconds, respectively. Thus, we may
conclude that ReaSC scales linearly to higher dimensionality and class labels.

The memory requirement for ReaSC is O(D∗K ∗L), whereas that of OnDS is
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Fig. 7. Sensitivity to chunk size (S) for different percentage of labeled data (P )

O(D∗microcluster ratio∗max capacity∗C∗log(N)), where N is the total length
of the stream. Thus, the memory requirement of ReaSC is constant, whereas
that of OnDS grows with stream length. For high dimensional datasets, this
requirement may not be practical. For example, for the ASRS dataset, ReaSC
requires less than 10MB memory, whereas OnDS requires approximately 700MB
memory.

6.5. Sensitivity to parameters

All the following results are obtained using a SynDE dataset (B250K,C10,D20).
Figure 7 shows how accuracy varies with chunk size (S) and the percentage
of labeled instances in each chunk (P ). It is obvious that higher values of P
leads to better classification accuracy since each model is better trained. For any
particular chunk size, the improvement gradually diminishes as P approaches to
100. For example, a stream with P=10 has 5 times more labeled data than the
one with P=2. As a result, the accuracy improvement is also rapid from P=2
to P=10. But a stream with P=75 has only 1.5 times more labeled data than a
stream with P=50, so the accuracy improvement in this case is much less than
the former case. We also observe higher accuracy for larger chunk sizes. This
is because, as chunk size is increased, each model gets trained with more data,
which leads to a better classification accuracy. This improvement also diminishes
gradually because of concept-drift. According to [29], if there is concept-drift in
the data, then a larger chunk contains more outdated points, canceling out any
improvement expected to be gained by increasing the training set size.

Figure 8(a) shows how classification accuracy varies for ReaSC with the num-
ber of micro-clusters (K). We observe that higher values of K lead to better
classification accuracies. This happens because when K is larger, smaller and
more compact clusters are formed, leading to a finer-grained classification model
for the nearest neighbor classifier. However, there is no significant improvement
after K=50 for this dataset, where C=10. It should be noted that K should
always be much larger than C. Experimental results suggests that K should be
between 2C and 5C for best performance.

Figure 8(b) shows the effect of accuracy on ensemble size (L). Intuitively,
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Fig. 8. Sensitivity to number of clusters (K) (a) and ensemble size (L) (b)

increasing the ensemble size helps to reduce error. Significant improvement is
achieved by increasing the ensemble size from 1 (i.e., single classifier) to 2. Af-
ter that, the improvement diminishes gradually. Increasing the ensemble size
also increases the classification time. Besides, correlation among the classifiers
increases in the event of concept-evolution, which diminishes the improvement
intended by the ensemble. So, a reasonable value is chosen depending on the
specific requirements of a system.

7. Discussion

From the above results, we can conclude that ReaSC outperforms OnDS in all
datasets. There are two main reasons behind this. First, ReaSC considers both
the dispersion and impurity measures in building clusters, but OnDS considers
only purity, since it applies K-means algorithm to each class separately. Besides,
ReaSC uses proportionate initialization, so that more clusters are formed for
the larger classes (i.e., classes having more instances). But OnDS builds equal
number of clusters for each class, so clusters belonging to larger classes tend to
be bigger (and more sparse). Thus, the clusters of ReaSC are likely to be more
compact than those of the OnDS. As a result, the nearest neighbor classifica-
tion gives better prediction accuracy in ReaSC. Second, ReaSC applies ensemble
classification, rather than the “horizon fitting” technique used in OnDS. Horizon
fitting selects a horizon of training data from the stream that corresponds to a
variable-length window of the most recent (contiguous) data chunks. It is possi-
ble that one or more chunks in that window have been outdated, resulting in a
less accurate classification model. This is because the set of training data that
is the best representative of the current concept are not necessarily contiguous.
But ReaSC always keeps the best training data (or models) that are not nec-
essarily contiguous. So, the ensemble approach is more flexible in retaining the
most up-to-date set of training data, resulting in a more accurate classification
model.

It would be interesting to compare ReaSC with some other baseline ap-
proaches. First, consider a single combined model that contains all the K ∗ L
clusters in the ensemble M . We argue that this combined model is no better than
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the ensemble of models because our analysis shows that increasing the number
of clusters beyond a certain threshold (e.g. 100) does not improve classification
accuracy. Since K is chosen to be close to this threshold, it is most likely that
we would not get a better model out of the K ∗ L clusters. Second, consider a
single model having K clusters (not exceeding the threshold) built from L data
chunks. Increasing the training set size would most likely improve classification
accuracy. However, in the presence of concept drift, it can be shown that a single
model built from L consecutive data chunks has a prediction error no less than
an ensemble of L models, each built on a single data chunk [29]. This also follows
from our experimental results that a single model built on L chunks has 5%-10%
worse accuracy than ReaSC, and is at least L-times slower than ReaSC.

8. Conclusion

We address a more realistic problem of stream mining: training with a limited
amount of labeled data. Our technique is a more practical approach to the stream
classification problem since it requires a fewer amount of labeled data, saving
much time and cost that would be otherwise required to manually label the
data. Previous approaches for stream classification did not address this vital
problem.

We propose and implement a semi-supervised clustering based stream clas-
sification algorithm to solve this limited labeled-data problem. We show that
our approach, using much fewer labeled training instances than other stream
classification techniques, works better than those techniques. We evaluated our
technique on two synthetically generated datasets, and two real datasets, and
achieved better classification accuracies than state-of-the-art stream classifica-
tion approaches in all datasets.

In future, we would like to incorporate feature-weighting and distance-learning
in the semi-supervised clustering, which should lead to a better classification
model. Besides, we would like to apply our technique to classify other real stream
data.
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